
UNCLASSIFIED

AD 409755

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



N1O'CR: %&en goveznt or other davings, spe -
fications or other data are used for any purpose
other than in connection with a definitely related
government procuremnt operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formlated, fLrnished., or in any way
supplied the said dravingp specifications, or other
data Is not to be regarded by i.plication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any ritte
or permission to nuufacture, use or sell any
patented invention that may in any way be related
thereto.



TRANSLATION
IA NUMERICAL SOLUTION OF THE HEAT TRANSFER EQUATION

j" Sh. Ye. Mikeladze

L4J

LFOREIGN TECHNOLOGY
DIVISION

AIR FORCE SYSTEMS COMMAND

lWRIGHT-PATTERSON AIR FORCE BASE

OHIO

Sc

-, WJL 2 7



FTD-TT- 63-196/1+

UNEDITED ROUGH DRAFT TRANSLATION

A NUMERICAL SOLUTION OF THE HEAT TRANSFER

EQUATION

BY: Sh. Ye. Mikeladze

English Pages: 64

SOURCE: Russian Book, Trudy Tbilisskogq
matematicheskogo instituta imena
A. M. Razmadze. Akademiya Nauk
Gruzinskoy SSR, Vol. 27, Izdatel'stvo
Akademli Nauk Gruz. SSR, Tbilisi, 1960,
pp. 367-410.

S/k14-62T6 4 -40/72

THIS TRANSLATION IS A RENDITION OF THE ORIGI.
NAL FOREIGN TEXT WITHOUT ANY ANM.YTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BYs
ADVOCATEDOR IkPLIED ARE THOSE OF THE SOURCE-
AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION
OR OPINION OF THE FOREIGN TECHNOLOGY DI. FOREIGN TECHNOLOGY DIVISION
VISION. WP-AFB, OHIO.

FTD-T-"6 -a96/+2+4 Date 15 May 1963

P



Fl

A NUMERICAL SOLUTION OF THE HEAT TRANSFER EQUATION

Sh. Ye. Mikeladze

1. Preliminary Remarks

The Cauchy problem of the propagation of heat in -a one-dimensional

conductor has been studied in an article by Kurant, Fridrikhs, and

Levi [1]. The authors show that for a difference equation approxi-

mating a heat transfer equation to converge, the time step should

decrease in proportion to the square of the spatial step. It was

shown that the method may be used in solving multidimensional problems,

i.e., those with two or more spatial coordinates. They do not study

the law of error propagation nor do they estimate the error.

Even earlier, Richardson's work [2] had appeared in which the

question of approximating the one-dimensional heat transfer problem

with boundary and starting conditions was developed in one particular

example with the aid of a difference equation. In this work the

temperatures in the initial layer are calculated by a Fourier series

and then they are found by means of a recursion relation layer by

layer. The convergence of the computational process used in the work

is not demonstrated nor is the error calculated.

Subsequently it proved that Richardson's computational process
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diverges [2]. This fact is explained in a quite elementary manner

on page 22 of an interesting survey article by P. P. Yushkov [3].

Just because of the incomplete state of the theory of approxi-

mating parabolic-type linear equations by difference equations and

because of the multitude of interesting problems awaiting solution

we considered it expedient to devote a few articles to this theory

[4-6].

The aim of the present work is on the one hand to set forth the

problem of approximating parabolic-type equations by more complete

difference equations with positive coefficients guaranteeing that the

computations will converge for one-dimensional and multidimensional

problems under sufficiently general conditions, and on the other to

point out certain findings [7-11] made more recently in a less

general formulation and resulting from findings made by us earlier

[5].

The main attention of this paper is devoted to deriving the

general recursion relations which allow us to pass from layer to layer

and also to evaluate correspondingly'the error of the solution.

We worked out a method of constructing a system of linear

algebraic equations relating to each other the values of the unknown

functions in the nodes of any two successive layers. In the one-

dimensional case it leads to simple new formulas of great accuracy;

the method is also applicable to two- and three-dimensional cases

which up till now have been excluded from examination. This applies

especially to the three-dimensional case. It is demonstrated that

the derived system of equations can be solved by iteration, the con-

vergence of the iterative process being ensured for any intiial

values by appropriate selection of time and space steps from the In-

terval or intervals of change in them. In proving the convergence
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of the computational process, it is assumed that the desired solution

exists.

Formulas are derived for rhombic networks. From these, in

particular, are obtained the formulas for rectangular and hexagonal

networks and the solution errors are estimated.

Highly accurate formulas are derived for boundary conditions of

the general type.

The finite-difference equations and estimates to be derived in

this work may be used equally in the Cauchy problem and in problems

involving boundary and initial conditions.

In the following, for brevity, we concentrate only on the problems

of heat propagation with boundary and initial conditions.

Throughout this article we shall assume that we are considering

bounded, solid, uniform, isotropic bodies and will not especially

stipulate this.

The length of the article does not allow us to analyze all

possible cases to which our arguments are applicable. Those who

have familiarized themselves with our findings will easily see how

they may be used in various cases not examined in this article.

2. Error Analysis

In this section we shall investigate the errors in the various

algebraic analogs of differential equations of parabolic type and de-

duce sufficient tests for convergence of the solution of the boundary

problem for the difference analog to the corresponding solution of

the parabolic differential equation.

We shall assume the values of the desired function to be known

in the nodes of the first few layers and to be s in number and shall

examine the difference equations which permit us to determine its
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values in the succeeding layers, layer by layer.

In so doing, we shall limit ourselves to the case of a spatial

variable x and time t, inasmuch as the theory which we are expounding

is applicable to any number of spatial variables; but for definite-

ness our arguments will concern one variable. The extension to the

general case presents no difficulty at all.

We shall begin with certain definitions and nomenclature permitting

us to condense further arguments, and above all we shall agree, with-

out stipulating it each time, that when t > 0 there exists a desired

solution of u(x,t)*satisfying the given differential equation with

boundary and initial conditions, and that all derivatives of it with

respect to t and x, up to those orders which will be used below, also

exist and are continuous in the closed region Q.

As for the solutions of multidimensional problems, we shall

also always assume that in those regions where these solutions are

considered the assumptions of the preceding paragraph hold true.

Let us take rectangle Q in the plane x,t:

'oxz, ox _ T,

where T is the time interval during which the process is being

studied.

Let us now examine the rectangular network

..ih .. L ,.,,(,_ ...-k

parallel to the axes of the coordinates, the sides of the cells of

the network being h and 1 (along axes x and t).

Let us examine in the network the relationship
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( T s (1)

+ A. -+ ,PI .... -s

relating to each other the values of u(x,t) at the points (network

nodes) lying on the segments

i-i, ,-(j+z)4..... ,-(+,-)L (2)

with its values at the points (ih, (J+s)z) of the segment

t - (j+s) 1.

In the above relationship (1) for all the values of v, s, and

J we shall have
,.j-U(Vh, (+)1);

but the coefficients a and 0 are functions of the points defined in

rectangle Q, while Ri, s+J is the remainder.

Rejecting Ri,s+j we arrive at the recursion equation

U,. .- 0.. ,, 8.. u's + (3)

permitting us to find very easily the successively approximated

values of the desired function in all the nodes lying within Q,

starting from the values on the initial segments derived from Eqs. (2)

when 3 - 0.

Let us now investigate in what cases, when 1-+ 0, the approximate

values of UI, s+J will tend to the exact values ui, s+3 in the nodes

of the network.
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Using Formulas (1) and (3), we can write

" ., s J..4-1, + '-+ ... + E at. i.,j

where

is the error, and

A,,-i'(5)

Let M and 6 respectively designate the greatest values of

IR,s+,I and IAi, s+j In the rectangle Q; let us now limit ourselves

to the assumptions that coefficients a are not negative, the sums

of f s+J having positive values for all

a4 eit p, O j-so ... 9 Oki j

not equal simultaneously to 0.

We shall examine the absolute values of the errors in the nodes

of the initial segments t = 0, z,..., (s-l)l and the sides of rectangle

Q: x - 0, x - L; we shall designate the largest one of them by a.

We shall designate by $ S+J the upper bound of the absolute values

of the errors which occur on the layer (s+j)z as result of rounding

off the values of Ui, s+j computed with the aid of Formula (3). We

shall show that Formula (4) will allow us to investigate the complete

error , determined by the errors in the initial values, the

error in the Formula R, s+J" and the rounding-off errors.

Indeed, the fraction
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~ us-is +Z ~&,*~.~ 5 + E '.

-is the average for the errors

since all the a's are positive and do not vanish simultaneously.

Hence, when J - 0, the absolute value of the fraction in which we

are interested is not greater than e . Therefore Formula (4) on

layer t - si leads to the following estimate of the error

Setting J - 1 in (4) and repeating the above reasoning, we shall

verify that for errors in the nodes of the segment t = (s+1)Z there

exists the estimates

I , +, -< ;'+ (0 + b) M N a + a, +,

and, in general, for the values of the errors on layer t - (s+1)I we

obtain:

., o 1  + + +'+ ... + V) M

We shall examine these cases separately

8<x, 8-:, 8>1.

When 5 < 1 we have

M .W" •(6)I{, <, *+ ?-- + -a"

where $ is the greatest absolute value of the errors occurring because

of rounding-off the values of the solution in each node of rectangle
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The error 6,3+1, decreasing as J increases, has almost no effect

on + for sufficiently large values of J, it vanishes when -* 0.

The error M(1 - 6T1 depends on the remainder term of the calculated

formula (3) and 6. The value of 1 -6 may, in particular, also be

infinitesimally small in comparison with 1. Therefore if M is an

infinitesimal of higher order than 1- 6, then M(1 - 6)-1 will also

cease to affect the error t,, beginning with a certain value of

7. It remains to examine the effect of $(1 6)-1 on , i.e.,

examine the sensitivity of the desired solution to rounding-off

errors. We may, by holding h and I fixed, make $(I - 6)-1 arbitrarily

small, since we are in no way restricted in our choice of $. After

this, it is easy to indicate to how many decimal places one must

calculate using (3), so that the rcunding-off error is almost*

imperceptible.

When 6 = 1 we find

l , .+ + (U + 1) (M + 0).

Hence it follows that in the whole region Q in the case under con-

sideration there exists the error estimate

"(7)Rit,.; 04-A z- - (M + 0).

Thus proceeding from the values on the initial straight lines.

-and x 0, x - L, we shall be able to calculate with the aid of'

Formula (3) all the Ui, I ts in succession, layer by layer, and in

so doing, if the initial values are approximated with an error of order
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T with respect to I and the error in Formula (3) has an accuracy of

then we can always make the sum e+TMZ- l less than the previously

prescribed magnitude if Z and b decrease indefinitely and simultaneously.'

It remains to take into account the value of T$S-1 generated by the

rounding-off errors. The effect of this error, as in the preceding

case, may be made imperceptible, if it is calculated with superfluous

decimal places.

Finally, for 6 > 1 we obtain the inequality

M44 (8)...

from which it is evident that if Z tends to zero, then, in order for
T

the computational process to converge, the magnitude of 6 must be

limited and, in addition, e and (M + $)(6 - 1)-1 must be arbitrarily

small [in the best case they decrease equally rapidly, i.e., they

have the same orders of smallness with respect to gor p), when I and

h decrease simultaneously within limits].

Thus the presence of errors in the initial values and the effect

of rounding-off errors affect the final result most in the third

case. In this case no matter how small the initial errors are, the

right side of (8) may at times become arbitrarily large.

Therefore we shall limit ourselves in all that follows basically

to the cases where 6 gi). The question of decreasing the rounding-

off error has been examined above and, in general, will not be examined

further. In other words, we shall assume that the rounding-off errors

may be made insignificantly small, for all practical purposes, by

taking enough decimal places. Consequently, we shall henceforth

write out the estimates of , s+J' and shall at times omit the round-

ing-off errors $(1 - 6)'1 and T$Z-11.
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The limitation which the choice of the spatial interval imposes

on the size of the time interval for obtaining a convergent compu-

tational process will be stated later.

3. General Linear Nonhomogeneous Equation of the

Second Order with Two Variables

Let us examine the differential equation

7 a dx+ (9)

and seek the function u(x,t), which within the rectangle Q (of the

preceding section) will satisfy Eq. (9) and on the border of Q, will

satisfy the initial condition

S(X.o) =9, ) (10)

and the boundary conditions

u(o,:)= ,(I), b(L, t=) fQ). ( 1)

We shall assume, for generality, that the coefficients a,b,c, and g

are continuous functiens of the point (x,t) in Q; we shall assume that

the functions q(x), f1(t), f2(t) are also continuous in the

corresponding intervals

o.<x;iL arA ot;ST.

In addition we shall assume that

- Equation (9) may be replaced [5] by the finite-difference

equation

U, .,-, ,, I, + , 0 , L4.1+ - .A .,_,,1 + f ,,- ( 12) -
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Estimates suitable for investigating convergence can be obtained

almost at the outset by determining the coefficients a of Formula

(12) in conformity with (4) and then by finding M, s+j and 6.

For the coefficients of a we obtain the formulas

A'

2

Here the previous nomenclature is kept; thus, for example ai, k is the

value of a in the node (ih, ki).

Then we obtain for (12)

M--- 1bl..), (13)
12

where M2, M3, and M4 designate, respectively, the maximum absolute

values of the derivatives

____._C_____ 3 ~ Js(X,: '(X. 1)

in Q. Further, by using Formula (5) we obtain

5..= + I jcl.-.,

and estimate (8) in this case assumes the form

where M is given by Formula (13), and c designates the upper limit

of the absolute values of u(x, t) in the nodes of the network lying

on the sides of the rectangle Q: .
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t - 0, x - 0, x = L.

To ensure the validitly of the estimate obtained (14), and h

should be chosen so that

A' +I4, 0,

2 ad,,

hb
2 ,

in all the nodes lying within the rectangle Q.- The last two in-

equalities occur for all values of a and b and small values of h. If

we are interested in a value of z for some specific value of h, then

for convergence of the computational process we must take

2a..-+ igh'lr

provided that

2ai. k- h'1 , k> o

in all, the internal nodes of Q.

Now let the coefficients of Eq. (9), a, b, and c, be constant

while c,,6 0. Then

and, consequently, when c < 0 we are dealing with the first case of

section 2; but when c = 0 we have the second case. Therefore if the

calculations are performed with the aid of the formula

u. _.&+- [. 2  (I+k) U,,&+ U(1)U, TitI+ -.... u,,,, [-'+ (z + , -.

then In order to obtain an estimate suitable for any c4 0 we must'-

-12-



use (7), although for c < 0, in general, Estimate (6) is more ad-

vantageous.

Accordingly we obtain

-441, +., T< +--, MZ + A'AM4 + 2k3"Ibl M.+,,',O-1)

provided that

hjbI< 2. l h,
a 2a+k' Ic

Thus

., T[( 6M +aM 4 +2,bI,.),k+ _-.]

Finally let us examine the differential equation of heat propa-

gation of a thin thermally insulated rod of length L (with coeffi-

cient of heat conductivity a2):

20-'U (15)

under Initial Condition (10) and Boundary Conditions (11).

The finite-difference equation approximating this equation has

the form

U,, +, - 2 U" a. , + (U,, + E,. i.(16)

The computational process converges when Z and h satisfy the equa-

tion

Ja'~~. i(17)
7. 2.

The estimate of the error in this case has the form:

-13-



4. Numerical Solution of Heat-Conduction Equation

In this section we shall examine an improved difference method

of solving the general differential equation of heat conduction

- -- .. bu(o xL; os, ), (18)
at x,

where b is a positive constant and u(x,t) denotes the temperature.

We arrive at Eq. (18) when studying the distribution of heat

in a bounded rod (0, L), if we take into consideration the transfer

of heat to the external space. The case b - 0 (i.e., the case of

the thermally insulated column) leads to Differential Equation (15).

Difference equations of high accuracy approximating (15) were studied

in another work [5]; later a whole series of works waa devoted to

them among which we may note some listed in the references (7-13].

Although Eq. (18) is brought to the form (15) by substituting

u = e-btv into it, it would nevertheless be incorrect to neglect the

problems of direct approximation of the general equations by using

difference equations of high accuracy.

The basic question which arises here consists in finding the

conditions under which the computational process converges, since

the method of approximating the differential equation by a difference

equation remains the same as before [5].

Convergence occurs if, in addition to the limitations of Section

2, the product 1b (I as before designates the spacing with respect to

t) is changed in a special segment ensuring a bounded change in

X = h2/a 2 , where h is the spacing with respect to x. An exact

enumeration of the conditions under which the process converges is

given later.

In order to derive an equation of great accuracy let us expand

-14-



the differences u k- ul k and u .1' k-ui, k in accordance

with Taylor's formula, set up the expression ui+l, k - 2ui, k + Uj - k

and replace in it the derivatives with respect to-x according to the

formulas

O'U I tadu *L ,kdx4 -- z D+ b.

,. L. ,.c., + 2b, t + b,,)

the lower one of which is obtained by differentiating the'upper one and

by expressing the derivatives contained in the derived equation in

terms of the right side of the upper one and the derivatives of

lower order.

We find

+ 2 +kb + 4P 4

,+"' " b *" - & + 6 * J-+__- )_
,at 3a -- 2a : 6" dr

U;- 1) h< t <(V +1) k.

Let us now expand the differences ui, k+1 - Ui, k, ui, k+2-

- ui, k according to the same Taylor formula, multiply them respect-

iv,(y by the arbitrary, as yet undetermined factors a and A, and add.

We obtain

&4.1,, + T ,,+ - (9 + ) ,, (4+ 2) +r t

+ + ,) d2U _P aIU (x, 7) + 4P OPSI(xQ

Subtracting the two latter equations term by term we obtain a

relationship permitting us to. write

is Uo, 1 + A std, a43g-(~ + I;-2, 1) +
w e(19)

where-

-15-



-A' A'4-'.& 4 (1 - 21b),

A' hs (20)
-P( -b)

12 120 210'

the remainder term assuming the form

R p X -) +4,) (21)A. 6 3 60d3

In addition, we find

In order for the computational process to converge, we require

that the quantities a, 1,1 and the coefficients of ui,k satisfyii~k

the inequalities

a-o, > , >o,

Ab A'h'

In this case, P, ,* , i.e., 6 * 1 and consequently Estimates

(6) and (7) will occur, respectively.

We thus obtain inequalities of the form
6-(1 -A)1<o,

12 - (I -'0)<o, (22)
&+ :2A - (I - A - A%)X<o." 22

24 -(18- 1"2A.)X 0,} - 3A 4- A&*) t ;O,

where
A-b, '7 , (23s)

Since we are interested in the case b > 0, we rould attribUte"-

only non-negative values to A. On the other hand, X should be

bounded. Therefore A should assume values from the interval bounded



by 0 and the lowest positive root from the number of roots of the

following equations:
s--sA-o, ,- A o. , - A--4t-o. j-SA+-A -o.

By calculating we find that this root is equal to 0.3819660...,

and consequently Z must be such that

o A<o,3i9 66o0. (24)

and it is obvious that if A and X are chosen so that the second of

the inequalities from the top in (22) is satisfied, the first in-

equality in (22) will also be satisfied.

Thus the first inequality can be omitted and the possibility

of the remaining three inequalities for A's defined on segment

(24) may be investigated. Thus we should investigate .the functions

defined by the inequalities

F, (., )=-12 - (t- 2A) 1:5 0,
F,(A, ).)=6 + 12A-( -A- A');L < 0,

F,( , ))-24-(,- 121) + (I - 3A+ A')'O.

Investigation shows that in the region D bounded by the segments

A=O' A-o, 38,9 66o...

and the curves

I

S-2A

* 9 -6&+V " 
57 - 6A1+2A

. 3A-A'

the functions F1, F2, and F3 have negative signs and that

12 9-6A+V 57- 6A+A, (25) .

- -1?-



for any A of (24) and any point (A, X) lying in region D.

When A - 0, i.e., when b - 0, we hence obtain, in particular,

that for the computational process to converge for C15) realized with

the help of Formula(19) the values of X - h2/1a2 should be taken

from the interval

12 _A9+'7

This inequality was obtained by another method by P. P. Yushkov [12].

The estimate of the error in approximating (18) by the difference

equation [obtained from another article [19] after neglecting the

remainder term] has the form
.T 1 i• 1)M - M]

(26)
6e"I 6o

where M3 and Me designate, respectively, the greatest absolute values

of the partial derivatives

U(X,1) do (X, t)

in the rectangle Q, and e is the greatest value of the absolute error

in the initial values of u(x, t) in the nodes of the segments

t = 0, t = 1, x =0 , x = L.

Let us note, moreover, that the values of u(x,t) in the nodes of the

segments

t = 0, x - 0, x - L

are known to us from the boundary conditions. The values of u(x, t)

in the nodes of the segment t = I may be calculated, for example,

by using Taylor's formula (5,- 13].:

Hence the following conclusion:

Theorem. If A 1 lb and X - h2/1a2 , during a change of h and X,...

satisfy Inequalities (24) and (25), then Eq. (18) with Initial
• " " "' .. .. , .STOP t,IkE

S- -18-



Condition (10) and Boundary Conditions (II) may be solved numerically

with the aid of Formula (19) without the remainder term Ris k- The

error (x, t) in each internal node of rectangle Q at the moment

t - T will satisfy Inequality (26)b

In (19) and (20) let us now assume 1 - 0 and transform the formulas

obtained by using relationships (231 Then the finite-difference

equation approximating differential Eq. (8) is transformed into

U, &4-(t -- ) - (Ud+%, + U,_1, 1)+ AS- A+ 4 Uj, (A< :); (27)
6 6

the error in approximating this formula is

0 • (1 -&)3hl JIM (X, j)) (I - A)*, V #,(ft)

6 1296 a* ,I " x+ o 

so that
, -A) M+ (1 

b)' M1.
'W 129A a 2160 J

By computation we verify that for (27)

A' - A +, > o.

But, since Ai, 8+, has a maximum at the point A = 0 and equals unity,

then 6 = 1. Thus, if we solve the general heat-conduction equation

with the aid of (27), we arrive at Estimate (7), where z is the

largest absolute error in the initial data given on the segments

t - 0, x - 0, and x - L.

The following rule for the numerical solution of Eq. (18) with

Conditions (I0 and(11) stems from the preceding arguments:

. Rule. To solve Eq. (18) numerically, the values of U(x, t) are

calculated successively, layer by layer, with the aid of recursion

formula-

-19- -_



where • .: . . . 6 hl
S-. ._ (0 -4: A < ,,

and also the values of U in the nodes of the first layer are found

from the values of U.0 , in the nodes of the zero (initial) layer,

known from (10). For the error which occurs from using this recursion

formula at the moment t = T the following estimate holds true

It (x, tl +, [ as -- %)2 M3 A, , l *- ) M61 h4.

The preceding rule can be formulated as follows when A - 0:

For a numerical solution of Eq. (15) with Conditions (10) and

(11) the values of u(x, t) are calculated in the nodes of the network,

layer by layer, with the aid of the formula

U(x-t+J, ,U(xh+4 U(x,)+U(x4h,) (28)

6

and the inequality

I i ( X . I _ , + .) .- ,-; a 1

ensuing stemming from (7) allows us to estimate the error in the

numerical solution of Eq. (15) with the aid of (28) in any node Q

at any moment t T.

There is one more conclusion from formula (28). We arrive at

this formula by setting X = 6 in (16), inequality (17) being satisfied

at this value of X, and, consequently, the computational process

converges. But now we can no longer rightfully assert that at the

moment t the error resulting from rejecting the remainder term is

infinitesimally small. and has at least the fourth order of smallness

with respect to h, as follows from (29). This is a disadvantage of

this conclusion.

-20-



When we finish the present section, we shall try to reduce the

description of the derivation of the high-accuracy difference formulas

for (15) to the widest limits of generality.

Using the expansions u(x, t) according to Taylor's fcrmula

.both with respect to both x and with respect to t, it is possible,

by repeating the author's arguments [5, p. 83], to derive the formula

+ (2 -At - At _... -A.) Uj, -- Rd, I,

where the coefficients A1, A2 .. •, A satisfy the equationsn

A,+2A, +... + -A.-),
21

....................
A4, + 2*A, !F+-- "*A. -2

For the remainder term Ri, k we obtain the estimate
S

I , ( + 2)! 1*. , M s.$. h '+ "

where, as before, X = h2/Za2 .

The system found above, where X / 0, has a solution, since its

determinant is nothing other than the product n! times the Vandermonde

determinant, of order n, composed of the numbers 1, 2,..., n, and there-

fore it is different from zero.

It would be interesting to find the conditions which must be im-

posed on X and at which the estimates in Section 2 remain valid.

The criteria in Section 2 in the general case result in investigating

a very large number of inequalities and therefore will hardly be

-practicable for investigating difference equations with a large'

-number of coefficients. -

In the solution of multidimensional problems new questions arise.
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We shall therefore examine below equations with three and four

independent variables.

In addition, in Section 6 we shall derive difference equations

in which the desired values of u(x, t) in the nodes of the segments

Idand :-(k - ,)(i 1, ,...)

are related to each other by a system of linear equations with a

number of equations equal to the number of unknowns.

Equations of this type, possessing great accuracy, may be used

to determine the unknown values of u for each layer by solving a sys-

tem of linear algebraic equations, a circumstance which is especially'

attractive, because it frees the calculator from a diverging compu-

tational process (to which the use of the non-investigated recursion

formulas sometimes leads) but does not free him, of course, from

investigating the error, in order to obtain the final result with

the desired degree of accuracy.

5. Concluding Remarks

This section contains a short critical survey of certain investi-

gations devoted to the problems of approximating a one-dimensional

heat-conduction equation by means of difference equations in the di-

rection of the method and theory elaborated by the author [4, 5].

Assuming b = 0 in Relationships (19) and (20), we obtain for

the solution of the differential equation describing one-dimensional

heat propagation the finite-difference euqation

........, +I +P U.+ - (U A + U-A+ (2 - 9- ) ,-(30)

-where s.-
-- -- 4=21-~~ 2 -6

+1, 1 2-
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.the remainder term has the form (21). This same expression (30) was
derived by us [5, p. 83] using the method of undetermined coefficients.

Concluding the derivation there, I remarked that it is possible to

make up a set of difference equations of form (30) for approximating

the heat-conduction equation, given X, then I wrote out one such

''formula corresponding to the case X - 16 and said that with its aid

a final result may be attained with an accuracy of h4 , if the initial

values of u(x, t) are known with the same or greater accuracy. The

prodf itself is elementary, therefore it is not given there. The

course of the proof is the same as for the general linear nonhomo-

geneous differential equation of the second order with two variables

or for an equation with three independent variables (see author's

papers [4, pr 5 (Section 12)].

Subsequently, in D. Yu. Panov's manual [7, P. 111] a Difference

Equation (28) was derived without estimating the solution error.

The derivation is made with the aid of arguments similar to ours

[5, Section 12].

As is easily noted, Fbrmula (28) ensues from (30) for X = 6

and requires no special derivation

P. P. Yushkov, studying Formula (30) for other purposes in

his early work [12] also did not notice that Formula (28), in partic-,

ular, was derived from (30); but he subsequently corrected this.

I am unconvinced that such remarks are generally desirable, but

in the case in question they are apposite or at least pardonable

and may be continued.

Further study of difference analogs of the unidimensional -.

heat-conduction equation and the corresponding error is found, in
" _ ...... - 1 2
particular, in Milne's monograph [8, 14] and in the works of his- ..

successors [9, 10, 11s 15],- J _ 
sr t,C - STOP HERE



My remarks would be somewhat incomplete, if I did not note that

the proof of Eq. '(28) and Estimate (29) given by the authors Just

mentioned is based, firstly, on a method of constructing difference

analogs of differential equations developed by us previously [5] and,

secondly, on a method developed in other articles [4, 5] for estimating

the error resulting from the approximation of a differential equation

by a difference equation.

The estimate obtained by Milne [8, p. 134; 14, p. 122] will

completely coincide with ours (29),. if in the latter E and U- 1 are

deleted, i.e., no account is taken, firstly, of the error in the

initial values, and, secondly, of the rounding-off error, and the

nomenclature is changed.

6. Solving the Heat-Conduction Equation with

an Aid of a System of Equations

Up till now we have studied only the recursion formulas which

allow us to calculate the values of u step by step. The present

section is dedicated to the study of the heat-conduction equation

by a finite-difference method enabling us to find the values of u

for the next layer by solving a special linear system of algebraic

equations.

The method will be developed for application to (15), although

it is suitable for the general case.

It is true that the numerical solution of the heat-conduction'

equation by the method of this section is considerably more compli-

cated than the solution using recursion formulas, but on the other

hand, as has already been mentioned at the end of Section 4, it

frees the calculator from having to analyze the convergence of the

computational process.
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Consequently, we are at times simply compelled to refrain from

using certain recursion formulas which make the computation practically

unsu-itable (unstable) as a result of the rapid growth of.the error

in the solution even when the error in the initial values is

imperceptible or as a result of rounding-off errors.

The proposed method of constructing new formulas for the solu-

tion of the heat-conduction equation has an independent interest,

since, in the first place, it can be used for solving multidimensional

heat-conduction problems, and, secondly, it requires the use of

quadrature formulas, in contrast to methods which extensively use

formulas of numerical differentiation or to the method of undeter-

mined coefficients 15].

Among the many such formulas let us dwell on the .following (t

is considered as a parameter)
,,(x- h, )--" ="(X, )+, .+h

/it

-- [,,(-h, ,)+ OU..(X, I)+U,(X+ht)]- (31)
12

+ ),
240

as the most suitable for our purposes; it was used by the author

[16] to solve eigenvalue problems.

Let us now substitute t + I into (31) in place of t, add the

resulting formula term by term to Formula (31), and replace ux2 in

the resulting expression by a-2ut. Let us transform the latter

expression by means of a trapezoidal formula of closed type:

,,', (xI +') + U, (X, 1) 6 (32)
S, 2---[UIX, t.1-- u+(r, ')1+ "--" u¢(x, Y) 1S<'v3<' "+"1)2 "

and of two more of the same resulting from (32), by replacing x in

it by x-h or x + h. Reducing the similar terms, we arrive at the
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difference equation

+(6- 1)U(X+A, t+O+(6+))(x-, +)

-(12- oA) V(X, 0 + (6 + ) U(X + ,-o,

.the remainder term R of which may be evaluated with the aid of the

inequality

'1

where Me is the greatest value of 1U(1x(x, t)I in rectangle Q.

If now

ie'

then Eq. (33) will be a trinomial relating the unknown values

of U in three nodes of the layer t + I to its values belonging to

layer t. Similar equations may be written for each node of the layer

t + 1. The equations for the boundary nodes with abscissas x - h

and x = L-h will be binomial.

A trinomial linear algebraic system of equations was studied

by us in an earlier work [17, section 25). There an:analytical method

of solving a system was developed, according to which the exact

value of U(h, t) is found first, and then, using the equations of

the given system,

U(2h, t), U(3h, t),...

are found by successive substitutions.

The system derived above may also be successfully solved by using

successive approximations. The convergence will be investigated

below.
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In the system consisting of equations of type (33) x and t

intervals may be arbitrarily chosen, which advantageously distinguishes

the numerical method examined from the preceding one (Section 4).

When X - 6 we again arrive at recursion Formula (28).

It remains to show the convergence of the method of successive

approximations for (33). Let us rewrite it in the form

U(x ,t 0-,[U(x-- , 1+10+ (x + , t+ I)]  A(x. . (34)

where
S- 1 

(35)
12+ 10)

the quantities A(x, t) depend on the values of U of the preceding t

layer; therefore they are known.

We shall consider that we have chosen (completely arbitrarily)

the initial approximate values of U in the nodes belonging to the

segment t + 1. The result of substituting these values into the right

side of (34) will, in general, be distinguished from u(x, t + 1);

we shall therefore estimate the closeness of the approximation to

u(x, t + Z).

We shall designate by e(x,t + 1) the difference between

u(x,t + z) and the result of the substitution. Let e designate the

maximum absolute value of the difference between the exact values

of u and its initial values in the nodes. We shall estimate the

difference e(h, t + i) . Since u(O, t + 1) is known to us, we add it

to A(x,t).

Thus, having designated the error in the first approximation

by t(x, t + 1), we shall verify that at the moment t + Z the

following inequality will be true for it

,(h, t + 1)l-<  .
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That is,

Its (2;, 1 + 1)1 -(, + 6),a.

Similarly

Continuing these estimates further, we find that for any yalues

of k the following inequality will be fulfilled

t, (kh.,t-+ O, --

if a < 1, or, according to (35), 0 < x < 6

Now let us estimate the closeness of the second approximation

to u(x, t + Z). As in the preceding case

I f (khq, + .

Continuing these estimates futher, we find that for any values of n

the following inequality is fulfilled

I.(kh, t + 1) 1;

and the error t(x, t + 1) will tend to zero

lim t(kh. I+I) 0o

if a(1-a)-1 , i.e., if a < 0.5. Since X belongs to the interval (0.6)

and the maximum value of a when X varies in that interval is 0.5,

then by choosing h and I sQ that 0 < X-< 6, we ensure the conver-

gence of the successive approximations for (34).

In order to illustrate the use of Eq. (33), let us solve

numerically the differential equation

(36)

with the boundary conditions
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That is,

Similarly

Continuing these estimates further, we find that for any values

of k the following inequality will be fulfilled

It, (kh,stL . 5I -5

if a < 1, or, according to (35), 0 < X < 6

Now let us estimate the closeness of the second approximation

to u(x, t + 1). As in the preceding case

IL, (kh,, + OM

Continuing these estimates futher, we find that for any values of n

the following inequality is fulfilled

and the error t(x, t + 1) will tend to zero

lir 9.(kh. I+-0o

if a(l-a)-1 , i.e., if a < 0.5. Since X belongs to the interval (0.6)

and the maximum value of a when X varies in that interval is 0.5,

then by choosing h and I sQ that 0 < X-< 6, we ensure the conver-

gence of the successive approximations for (34).

In order to illustrate the use of Eq. (33), let us solve

numerically the differential equation

with the boundary conditions
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so-- I

u-tS'76 . X 0, N0 WhO XZ, 2

and the initial conditions

uMCOI - X
2,4

when t = 0.

Let us take h - 0.24, Z = 0.048. Then
A'

and the difference equation in which we are interested will assume

the form
U(x, I + .2o,2U[(x-h ,+ t + U(X+, t+.I +

+o,s[U(x-h, O+ U(x+h,)J. (37)

If we successively set in it x = h, 2h, 3h, 4h and t = 0, we obtain

a system of equations

U1.1-o, U,, + 0,72692,

U2,1= o,2 (U,,, + Us, + 0,46165,

73,,,=o,2 (U,,1 + Up,,)+o,33541,

U,,,=o,2 U,, + 0,17634,

the solution to which is given in Table 1. At the end of the table

the values of the exact solution are given for comparison.

The values of u in the nodes of the succeeding layer t = 0.096

etc. may be calculated in similar fashion.

TABLE 1

, ppzxiozate values of u' Values of sgoat
:odes of layer t a 0.041 solutlom

o 0.92;05 0.921(5
0,S4 0,87$94 07597
0,4  0,74511 0.74534
0.72 0,54115 0,541.4
o.96 0,284 1 0,34464
1.20 0 0
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In the case of more complex boundary conditions the methods

described above may be used almost without change. It is necessary

only to properly construct the equations, approximating the boundary

conditions.

Thus in the case of two boundary conditions of the general type

U (0. 11 "- o,' (', :) b 0:), (38)
.u(L.ti -- a,u 5(Lt, I':,.

it is necessary only to replace the partial derivatives appearing

in them according to the unilateral formulas of numerical differentia-

tion (cf. aathcr's earlier works [17, 18]).

But, unfortunately, when integrating with the aid of recursion

formulas, such a replacement often leads to considerable distortion

of the solution, since in the actual calculation of the partial

derivatives the already calculated values of u(x, t), which were

subject to error, are used.

Therefore it is desirable to find some new means for approxi-

mating the boundary conditions when solving equations with the aid of

(34).

It is natural to expect that they may be obtained by using for

the approximation both the given initial conditions and the given

differential equations simultaneously. Let us now turn our attention

to the construction of these formulas.

We shall begin with a consideration of the quadrature formula

S(X h , 1) -. U (X- h, :)=2hU. (X- 18,':) + (39)
2 4+-- A'u., (r.- -+ h', t (x, I) -I- R,
3 3

where

45
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Here M5 denotes the maximum value of .4A(z, ) in the region Q. A

derivation of this formula appears on page 1210 in one of the author's

previous articles [19].

The method of constructing Eq (33) with the aid of (31) can

be applied almost without change to Eq. ( 9). After employing.

trapezoidal formula (32), it is only necessary to replace x by h,

in order to obtain the final formula. We thus obtain the relation-

ship:
[,+±A , , - 2h-ha,t"° ' '+l + u'.(o, 51 +u,, +L + (.k+

• _ (4 )(40)
t2h. IO., 1+ 1) $)1- a (°. Rot

the remander term R* of which may be evaluated with the aid of the

inequality
41" +---'

45 3

where M3 is the maximum value of lu;'(.v-.1) in the rectangle Q, and

/at

Determining the partial derivatives u'.(o, 1+ ), ua.(0, 1) for

a, / 0 from the upper equation of (38) and substituting them into

(40) leads to the equation in which we are interested.

It is also possible to derive exactly an equation similar to

(40) containing u'.( 1, 1lIA u'.(L ,. and then eliminate from

it the derivatives with respect to the spatial variable, employing

for this purpose the lower equation in (38). It should be noted

only that before we proceed to construct the formula'in which we

are interested we must replace h by -h in Quadrature Formula (39)

and then set x = L - h in the formula thus obtained.

As an example we shall again solve Differential Equation (36)

with the initial condition
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0;(x.- 0o co 2 X(o X

and the boundary conditions

. (o, 1) -o, u(2, S)-o,

i.e., we shall solve the problem of the cooling of a rod with a

thermally insulated lateral surface, when the initial temperature

distribution is known, assuming that one of its ends is thermally

insulated, while the other is kept at a constant temperature 0.

Let Us take a = 1, h = 0.1, and 1 = 1 = 1/120; we then obtain:

X = 1.2 and the difference equation will again be of type (37).

By setting in it x = h, 2h, ..., 9h, successively, and t - 0,.we

obtain a system of nine equations in ten unknowns uk,1(k - 0, 1,...,

9):

u 1,,o,2(,, + U,,,)+ r1,7o634,
U;,1-o,'2(U1,1 + U,.,)+ 11,27217,
U311 =0,2 (U,,1 + U1.1) + ,56144.

V111,=0,2(U., U,,)+ 9,58868,

the last of which satisfies the boundary condition u ,i = .

We obtain the missing equation after satisfying the boundary

condition in (40) ux(O, t) = 0 at the points (0, 0) and (0, -- ).

Rejecting the remainder term and taking h = 0.1, we obtain the follow-
U,,,, -0,2 (U,+ U,,) + 8,358O2,

ing formula U,,,-o,2 (U,, + U,,,) + 6,96659,

U7.1-o,2 (U,, + Us,,)+ $,38oAh.

U,,-o,2 (U,,, + U,,,) + 3,66a55,

which is accurate up to hS . U,,-o.zU.,+,8 5 4:,

We shall give the results of the computations (Table 2). The

values of the exact solution are given at the end of the table

for comparison.
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TABLE 2

Solution of Eq. (36) for nodes of the layer
t- 1/120

Initl* valus of u Ap1'ozito Value In
in thenodes of nodes of OW UeOVU VSalsofthe

X t e vor 0 0 
• /LO .zot solution

o 20 19.5930t 19.5900
0.1 19,75377 39.3'74 19,.5178
%3a 19,02111 18.6341 ,8.634o5
03 17.82013 1 17,45745 17.15749
0,4 16,180 34 ! 5.85 O3 15.8;107
OS 14,14214 11,85432 13.,54,5
o.6 11,75573 1,51646 21,5I648
0,7 09,7981 I 8.89502 8.89504
o,8 6,:18034 6,o5456 6.05457
0.9 3,j2869 1 3,06501 3,065oa
1,0. 0 I 0 0

The system was solved by the iteration method.

The convergence of the iteration can be proven for the general

case, i.e., for a system of equations consisting of I/h - 1 equations

of type (34) and one more equation

U (0, t +1)=-.-- 3 [ U(211'1 + 1)--U(h'l. + +B(h,. 1),

which results from (.0). Here B(h, X, t) is known, since it is a

function of the values of u in the preceding layer.

The following inequality will hold true for the error in the

first approximation at the moment t + I

3 +8 ( o.,T,...),
-S3+4

provided that a < 1 and consequently that 0 < X < 6, in accordance

with (35). Continuing on, we find that

(,h, t +/1) 15 3+81 )

Thus the convergence of the Interations is ensured by the condition:
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6-f-I 341 '4

From the amount by which the left side of this inequality differs

from unity it is possible to judge the rapidity with which tn.

When X = 1.2, the left side of (41) is equal to is 21/52, and

consequently there is convergence. This value of X is not the best

of the number of possible values ensuring rapid convergence of the

iterations in our problem.

In order to approximate the boundary condition u'(O,t) M 0
X

it is also possible to use Taylor's formula, the given differential

equation, and Formula (32). We obtain:

Then for the example considered above we arrive at the formula

61a2U., , + 10( ,6+ U j
22

which is accurate up to h3 .

7. Multidimensional Problems

In solving multidimensional problems questions arise which re-

quire explanations. Further examinations must be carried. out

separately for two-dimensional and three-dimensional space.

We shall first examine the propagation of heat in a thin plate

with a contour of arbitrary shape y. For this case we have the

differential equation

-(12)
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where A denotes the Laplacian operator:

u is the temperature of a certain point (x, y) at the moment t, and

a2 is the thermal-diffusivity coefficient.

We are thus confronted with the problem of the propagation of

a temperature u(x, y, t) in a finite principal region D bounded by

the curve y . The problem consists in finding a solution to Eq. (42)

which satisfies the initial condition and the boundary conditions.

Let us first examine the boundary-value problem, when the

initial temperature distribution in the plate is known

11 (x, y, o) - (x, y) (43)

and during the whole time of observation the temperature on the edge

of the plate y is kept equal to

U (.,., .' , - - f/(X, Y, t), (44)

where f(x, y, t) is a given function on the curve y, and : and z are

the coordinates of a variable point on this curve.

Equations (42) with Conditions (43) and (44) has been examined

previously [4, 5]. The author [4] has examined an algebraic analog

which approximates the equation w'-h an accuracy up to h2 , where h

is a side of a square of the network, and in another paper [5] an

analog which approximates (42) with an accuracy up to h4 was given.

The latter analog, i.e., the improved difference equation ([5] P. 92)

approximating (42), has the form:

U(x , t + I)-4 I xh, y +h, 1)+ U(x- h, V +h,OI (115
36(45)

+U(x-h, y-h,)±1(+h, y-h, )+4[(x+h, 7,1)+

U (x, yI h, s) + U(x- h, y, '- t) s + ,61'(x, y, j)
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where x and y are the coordinates of the main node of the square

network, i.e., that (fixed) node (x, y) for which Equality (45) is

written, and I is the spacing with respect to t.

For convenience Formula (45) is presented in the form:

4o,,U&, N,+ t,.+16U,., (6)

4
where Z (respectively Z) is the sum of the values of U at

k 1 k = 5
the moment t in the network nodes at a distance h (respectively

V2-h) from the main node 0.

Considerably later, Formula (45) was derived by an operator

method by W. E. Milne ([8], p. 150; [14], p. 137) and written in

symbolic form with the aid of a pattern

I
U X-Y,1+0- 4 1 4U(,Y

Then Eq. (47) was proven again ([11], p. 152; [151, P. 118) and

the proof was completed with the remark that it could be conveniently

used for solving the heat-conduction equation in two spatia-l variables

on computing machines.

Hexagonal networks (these are known as triangular networks

in the literature) for approx;:,ating Eq. (42) have been studied

by P. P. Yushkov [20].

In none of these papers do we find an estimate of the error in

the numerical solution. Therefore Eq. (46) is generalized in this

section for rhombic networks, and an estimate of the error In the nu-

merical solution of the heat-conduction equation found with the aid
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of this genera-lized formula is given. The generalized formula leads,

in particular, both to Formula (16) mentioned above and, consequently,

to the identical Formula (47), and also to a countless number of other

formulas which are of practical importance in certain cases.

All of these formulas are important in studying the propagation

of heat in square, rhombic, and hexagonal plates, although they may

also be successfully used for plates with any boundary configuration.

In these cases it is only necessary to add to formulas of type (46)

special formulas [6] for points adjoining the boundary. Afterwards,

the method developed by the author [6] for curvilinear boundaries

was used in several books [8, 14], § 65; [Ii], 15], § 8, 6; (21],

§ 12.
2

' :
Fig. 1.

A. Let us now proceed to derive a formula for approximating

(42) for the case of rhombic networks. We shall base the derivation

on a previously developed method [22], § 5, which involves constructing

the relationships between the values of the functions of two

variables. This will permit us to write out the expansion of

u(x, y, t) for the main node (x, y), which lies in the center of a

network rhombus with sides 2h (Fig. 1) and diagonals parallel to the

coordinate axes. The expansion has the form:
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B

a,.(~y 1 0 a .,+ Ah' .a (x, y, +- A+ J ,, (x, Y, I) + R, (48)

where
A, -- 6
.4, - 2 : sin' w og w.S m

go= 14+ Veto+ -} ete' at.

aou, 4 (,, +', +', +,u,) + We tow - 1) U + as + (49)

+(3ovwr'0-1) 1 + ,+ U

I(50)R <-[il sin'w CO to' - 4 (sin w + cs' w) + (sin e + co.u8)IM..
45

where ul, U2 , u3 , and u4 denote the values of u(x, y, t) at the

moment t at the vertices of the rhombus [with center in the main node

(x, y)] with sides 2h and diagonals parallel to the coordinate axes

(the odd subscripts refer to vertices lying on the horizontal diagonal;

and the even, to those lying on the vertical diagonal); us, us, u T ,

and us denote the values of u(x, y, t) at the mid-points of the sides

of the same rhombus; w is the value of the angles formed by the hori-

zontal diagonal of the rhombus with the sides of the rhombus; and

Me denotes (here and henceforth) the upper bound of the values of

d,, dX I y2 I JXJ ()y
U~ "U

within a certain three-dimensional region of space x, y, and t in

which the solution is sought.

In order for the coefficients of a. to be non-negative, in all

that follows o will be determined by the condition:

6 3



From (49) it follows that

68 . (52)

Then if, together with (48) and (42), we make use of the Taylor

series expansions of u(x, y, t + 1) and u(x, y, t + 21) exactly as

we did in the.one-diemensional case (§4), we obtain:

Y,1+--(XZy, 1+ 2,+ (a-,, (5)
=- ,u, + R +&R, + R.,

where
S - 2A,X+2,4,1'= 12X -4' sin' Wcos' , (54).=o,$ A,- , '-- - 3 + - 2 si'uwco3  (4

while for R, and R2 we have the inequalities

I&,I- 4,h 3'M9*G (55)
313 - 3X3

Let us now choose X such as to make 0 equal to zero. This will

allow us to discard the term Pu(x, y, t + 2Z) in (53), and we shall

arrive at a recursion formula allowing us to determine the values of

u at the moment t + I from its values at the moment t.

Moreover, we find from Eqs. (54) that

Ism 9 0, 10 *
Lain, cos'W u, SiU' w O0'8

6

sin, W Coale

Consequently, when 0 = 0
+) 6- -Sin'coS'+

.. 9 (56)
+"isWo' W am + R, + -Sins Woe o R.

9 i-ms

It is easy to see that

S-8 sin w cost Wi> o.
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We also know that all the aI's. in (49) are greater than or

equal to zero, if w lies in (51). Consequently variation of co be-

7rtween and r entails the non-negativity of the coefficients of

Eq. (56). In all that follows, therefore, let us agree to consider

Formula (56) for those values of w for which Inequality (51) is valid.

Thus in order for the computational process generated by Formula

(56) to converge, it is enought that the relationship between the

h and I intervals be taken such that

6 S I1=,c8.

In any case, if c belongs to (51), we obtain by using (56) and

(52) 2 S eDS 4* ( )

3 6

and consequently the error in the numerical solution to (42) found

with the aid of (56) (without the remainder term) in any node of the

rhombic network at any moment t,, T will satisfy the inequality

TI (, y. t) T + (M+ 4,

where sin't W CONosM jR, I +-I ,
I 9

where Inequalities (50) and (55) should be fulfilled for R, and R.

Now let the boundary contour -y be the network contour, i.e., it

consists of the nodes and links of the rhombic network. Then in the

estimate Just obtained e should be tkan to mean the absolute value of

the error in the function u(x, y, t) (06 t T) in the nodes of y.

Recalling the estimates for R, and R, we obtain the following theorem:
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If the solution of Eq. (42) with Conditions (43) and (44) is

sought with the aid of Formula (56) (without the remainder term),

then the error in any node of the network (lying inside y) at the

moment of t + T satisfies the inequality.

27 (57)

where G-I ,o.ihc.bcos w ± 12 iu, cos'o 4(Ehi'w+cO~SW)-I-

In the case of a square network with the diagonals of the squares

parallel to the coordinates axes u = , i.e., X = 6, from it we can

deduce the following theorem concerning the estimate of the error in

the solution:

Theorem. Let the solution to Eq. (42) with Conditions (42)

and (44) be sought with the aid of the formula

V(x, y, 1+ l=- [U,, + U2,,+ 3,, + U4,+ (58)
36

where Uo' t is the value of U(x, y, t) at the moment t at the center

of the network square.

Then the error in any network node (lying inside y) at the

moment t = T, in accordance with (57), satisfies the inequality

V-"2 Y, 7 71+ 24,'TMh' (59)
27

where h is the side of a square (inclined at an angle of 450 to the

x-axis).

The theorem is proven in the same way for hexagonal networks

with a network contour y consisting of the nodes and links of the
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network. For such a network the following theorem applies.

Theorem. If the solution to Eq. (42) with Conditions*(43) and

(44) is sought with the aid of the formula

U., I- -UI, + U., +-(I,,+U,,I + U12 + u,,I

where Uo, t is the value of U(x, y, t) at the moment t at the center

of a certain hexagon of the network, while a Ukt(k = 1, 3, 5, 6, 7,

8) is the value at its vertices, then the error in any network node

(lying inside y) at the moment t = T satisfies the inequality

io a 2TM ~h4 (6 0 )
2160

where h is the side of a hexagon of the network.

V
To prove this theorem, it is enough to take w = . in (56) and

(57).

For the sake of completeness, let us consider a square network

with the sides of the squares parallel to the coordinate axes. Let

us return to Formula (48) and in it set
8 4

a,=20, A,.=--6, 8 =- -- U, n.-4 .+ .

2 E= = =

in accordance with Formula (13) derived in chapter I ( 2) in our

earlier publication [5]. For this case Estimate (50) is already

invalid. Calculation shows that it should be replaced by:

RI 7 MAk'
45

Let us now examine the formula thus obtained, together with (53) and

the left-hand equalities in (54), when

Alm -6, , - -- o.
2

We then obtain X =6 and a =36, so that
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M~h
6o

For these values of X, a, and M we arrive at Formula (46), for which

I . ;1,)!) :+ a Mh, (61)
10

where h is the side of a square of the network.

As is apparent, Formula (46) and (48) have approximately the

same degrees of accuracy.

Thus in view of Estimates (59), (60), and (61) we arrive at an

interesting result, namely, that out of the three formulas with

identical h's Just examined [for the numerical solution of Eq. (42)]

the formula for hexagonal networks generally yields the most accurate

result.

Let us now proceed to a consideration of the general case. Let

us determine a and P in (54) with the requirements that for any

rhombic networks characterized by the two numbers h and w and the

* time interval 1, I.e., for any X which figures in (54), the in-

equalities

are fulfilled. In accordance with the discussions in S 2, this is

necessary for the convergence of the computational process and for the

estimate of the accuracy ahcieved.

Using (54), we can verify that the first and last of these three

inequalities are fulfilled simultaneously when

i8W WCOS
t
W

for all values of w in the interval (51); moreover, a study of the

second inequality indicates that it can be realized for any c in (51)

• -43-



when -9+

4 Bil ' Cos 6 4 sins C008 w"

where
':-V 57--648o0'wcosS .

Furthermore, no matter what the value of u is from (51), the

last inequality may be replaced by the inequality

3 < 9+-- (62)
sin, 0) Cos, 0 4 Bs 0 09 S "

Thus, X and w, determined by Inequalities (51) and (62), satis-

fy all three inequalities considered above and, consequently,

guarantee the convergence of the computational process carried out

for a rhombic network with the aid of Formula (53), in which it is

necessary to take a and 0 in accordance with Formulas .(54), to re-

place the sum 2 aiui in accordance with (49), to substitute
i

34 -4- 3 t- t Wo + 3 co: c - 9 -+ 2 2 Sint 0COS' -,

in place of the quantity ao - a- , and to solve the equation ob-

tained for u(x, y, t + 21).

It remains to give estimate of the error in the numerical

solution sought with the aid of the recursion formula Just obtained.

For this purpose, we should evaluate

M-- 1I R!-%IRsI +PjRtj), (63)

using Inequalities (50) and (55). From this there results the

following theorem:

If the solution to Eq. (42) with Conditions (43) and (44) is

sought with the aid of recursion Formula (53) solved relative to

u(x, Yj, t + 21), then the error in any node of a rhombic network

(lying inside Y) at the moment t = T satisfies the inequality
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provided that a and 0. figuring In (63), are determined by Es. (54),

in which X and a must be taken in accordance with Inequalities (51)

and (62).

Here a also denotes the maximum absolute error with which'the

values of u(x, y, t) are calculated in the nodes of the network

contour y when 0,6t T and in its internal nodes when t = 0 and

t = 1.

If these values are computed to an accuracy of h4 , then we obtain

the values of U at the moment T with the same accuracy.

Setting w = we obtain from (62) for a square network (with

the diagonals of the squares parallel to the coordinate axes) the

inequality

+(64)

and the computational process carried out with the aid of the formula

us, ,+,,-(o,5 ). - )-1 [Q.' - , 21) U,, ,+# - (0,5 '- 91 + 20) Uso +

4 a (65)
J]U,+4XZ U,,

which results from (53), will converge if X is contained in the inter-

val of (64).

As soon as X satisfies (64), Eq. (65) leads to values of U

subject to errors determined by the inequality

2- V+11 2- TM h'.
9 0,51-31.

If we now set X = 12, we may write Eq. (65) in the form

4 a
U,%U" 1 +4 Us. I + 1.6 U ,,$ '

, ,-36
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In this case the error e(x, y, T) in the internal nodes of the

network contour at the moment T satisfies the inequality

27

The method set forth above for solving Eq. (12) Is also appli-

bable to curvilinear boundaries. In this case it is only necessary

to set up and use special formulas for the points adjoining the

boundary, exactly as was done in our previous publication [6, 5 71.

B. Using Formulas (7) and (8) from the author's earlier paper

[23), we may in a way similar to what was done for the one-dimen-

sional case, derive a system of five-term linear algebraic equations

for the numerical solution of (42). The solution of such systems

requires fairly tedious work, if h is small, and the number of equa-

tions is consequently large, even- if the method of successive approxi-

mations is used. However, the possibility of using the method for

any spacing relationships makes it nonetheless practical. We shall

therefore describe the method in its general outlines.

Let us rewrite Formula (7) of the aforementioned paper [23]

in the form

4 8 4[Z]Pli,1, 4 Il,, t+ Il,.,- o h' 8. , + -talk , ( 6I

where uk,t denotes the values of u(x, y, t) in the specially selected

nodes of the square network [used for (46)] at the moment t. Formula

(66) is accurate up to hO.

Substituting t + I into (66) in place of t, we add the formula

obtained to Formula (66), replace

.. , 1, 2, 3. 4)
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by a - 2 't(xk, Yk' t) in the sum, and use Eq. (32), which is written

for two spatial c'oordinates.

Thus we obtain the equation

4

(2±A) U,,.-(4 +. )4 U ,.->.SU,,,. 4" (6)
4 a

=,-- (2" U, 4+ /',, U,,-e U,,,.

After writing out these equations for all the internal nodes

of a square plate, we arrive at a system consisting of n linear

equations in n unknown values of the function u(x, Y, t + z), where

n is the number of internal nodes of the square bounding the plate.

The system thus obtained may be solved by the iteration method.

For the proof of the convergence of the iteration process for any

initial approximations of Uk, t + z it is sufficient to require that

hk

In practical computations we shall assume that the values of uk, t

already computed on the preceding layer are taken as the initial

approximation for Uk, t + V

We shall rewrite (67) in the form

4 (

a Uk,1 43 b U,,,4++ At,(68)
where a=s

4 a

A b[(4+) 7, Il,. - (20-81) Us,#].
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Thus, the quantities At are linear combinations of the values

of U at the nodai points at the moment t, combinations which shall

hereafter be assumed to have been computed, i.e., the values of At

in (68) will hereafter be assured to be known.

We shall now take the numbers Ukt as the initial (zero).

approximation and set

throughout the entire square region. The values of Ukt+l are known

to us in the boundary nodes, and therefore the difference between

Uk,t + Z and its zero approximations will be assumed equal to zero

in the boundary nodes.

Let us now compute the values of U in the network nodes closest

to the boundary of the square y, using for this purpose the values of

u given on 7 at the moment t + I and the initial system of values

of Uk t+L for all the other nodes encountered in (68). In this

way, at least three values of U in nodes lying on y will figure

in each of Eqs. (68). Therefore, after denoting the error of the

first approximation by 1(x, y, t), we shall verify that at the moment

t it satisfies the inequality

, 1 +(x,y.+l,(;--2b)s= S. (69)

where
14- -,

Thus Estimate (69) holds true along the square yl, on which the

boundary nodes lie.

Then, using the values obtained for Uk, t+Z in the nodes of y7,

the initial system of values, and Formula (68), we calculate the

values of U in the nodes of the boundary 72 of the square which is
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next in proximity after Y,. For the error in the first approximation

at the nodes of 12, the estimate

,. 1 (x,,,i+I):;-(. -2h)a (3.+ )4--(I+g),.

will be valid. Analogously
I(x, Y, t*+4 I(a + 2b)& (I +X), + (54+ 2b)975

. (z +sI -')s,

where tj now denotes the error in the first approximation in the nodes

of the boundary 73 of the square which is next in proximity.

Continuing these estimates for (68) with the non-negative

coefficients a and b until all the nodes of the main square are

exhausted, we verify that the estimate

,,, (* , y, I + i " ',

finally holds for the first approximation, since a < 1"for any X,< 4:

Using the first approximations, we calculate the second approxi-

mations, etc. by means of Formula (68) in a way similar to that used

when we calculated the first approximations, etc. The error

estimate for the m-th approximation has the form:

C~. (X1, + =<6

whence follows the convergence of the successive approximations when

4 < 4.
-7

The most rapid convergence occurs when X = 4. In this case

Formula (67) assumes the simple form:

8 4 8

5U04-4. - E 6, $4j + 8 Uk-S+~ Mep+ 22 Us,. (70)

Using (70), we arrive finally at a system consisting of five-

term equations relating the unknown values of u in five network nodes
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at the moment t + I to its nine known values at the nodes at the mo-

ment t.

We obtain another formula for (42) by using Formula (8) from

the author's aforementioned paper [23]. Calculation yields the formula:

(20 + 1o) U,.,4 -=4  U., + (,-o.z T U,!1+

4 8'

+4 ,( i+(I + O Va,- (2o- 1ol)U.s,

which assumes the simple form

4 4 8

40oUs~t+v..4 V- 4 L~+4~ U&, + 2 TUS

for X = 2.

These formulas are accurate up to he . Finally it is possible

to prove, although we shall not take the time to do so, however,

that if the general formula of the preceding paragraph is solved for

Uo, t+1 and if an iteration is formed with the aid of the formula

obtained, then convergence will take place for all values of X for

which
2

14.3

The method may be applied to regions with curvilinear boundaries;

in these cases it is only necessary to set up and use special formulas

at the points adjoining the boundary.

Thus, using Formula (6.2) in the literature [22] for the layers

t and t + Z, Eq. (42), and a formula of type (32) written for two

spatial coordinates, we obtain for the boundary points the formula
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+ -1. S,, t+ , +, ,

h3+h4( h3  h4 h,-+3
+ f I + V, 4 1 . U- to) .

h~-h- h -

.where UV t is the value of U at the moment t at a boundary point with

the number v, while U1 ,t, U21 t, U3 ,t, U4 ,t are the values of U in

the nodes separated from the main node (the node with the number v)

by a distance of h, (to the left) and h 2 (to the right) in the direc-

tion of the horizontal and h3 (upwards) and h 4 (downwards) in the

dtrection of the vertical, respectively; the values of the function

u(x, y, t + ), denoted by Uv, t+, and Uk, t+,(k = 1, 2, 3., 4)

have the same meaning. As for X, it is equal as before to -

Za2

where h is the side of a square of a uniform network, so that

h i j h( i -- 1, 2,j 3,p 4).

In the case of boundary conditions of the general type it is

necessary to have a formula to approximate the normal derivative.

We shall derive one such formula, which is accurate up to h3 . More

accurate formulas may be obtained by using relationships (31), (32),

and (42) for two spatial coordinates.

Let us consider the edge of a plate parallel to the y-axis,

and let us set up a relationship for the boundary condition containing

the derivative with respect to the direction of the normal perpendicu-

lar to this edge.

For this purpose, let us represent u(x-i-h, y, t) in the form

U (x h, y, ,)=,, (x,, ,) -'hu.. (X, i, t + u Ui (x, y. t) + R1.

Expanding the functions u(x, y - h, t) and u(x, y + h,t) according
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to Taylor's formula, we find:U (X., .1)- 2,,(. , t) +,(,, y.- 1,, X, )+ RP

Therefore, if we discard the remainder term and use the relationships

thus obtained, we may write the equality
2,, (X+ lb , y . -L, (x, y ' h, t)- 4.(x, y, 2) + u(x, y-h. I)-,

= 2hu ,(x, , 2) - h".u (x,*y, 1).

Next, let us write out the same equality for the moment t + 1,

add it to the preceding one, and then convert the relationship

obtained, using for this purpose Formula (32) written for two spatial

coordinates.

As a result we obtain:

2Xu, : -. >l)'--h11,,,'.(x, y,, I) -",(x,y, s-=- O] +

u (, y J- h, t 2u(.v - h, it )±- i(, t-h,t+l)- (71)

-(4- 2X)" (-u ' , :) -j- ,, (x, y - h, 1) + u (x, y h, 1) + 211 (X +hy,.

If Eq. (42) is solved with the aid of Formula (70), then in (71)

it is necessary to take X = 4 and to replace the partial derivatives

with respect to x in accordance with the boundary conditibn on the

plate edge under consideration.

It is easy to derive formulas similar to (71) for the remaining

three edges of the plate.

C. Let us consider the problem of the propagation of heat in a

body bounded by a surface S, when the initial temperature inside

the body assumes the values f(x, y, z), while the boundary (the

surface S bounding the body) is maintained at the temperature

9(x, y, z, t) at all t > 0.

It is required to calculate the temperature of the body at

each of its points at any moment of time.

The solution to the problem reduces to integration of the
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the three-dimensional equation
d u 6 Su / 'o 0 3
_-.a- u 2+ (72)

with the boundary condition

and the initial condition

U (x, , 0, ) -f/(.V,Y,

Let us consider a cubic network in a space with a rectangular

coordinate system x, , with the faces of the cubes of the network

parallel to the coordinate planes.

Let us now take a cube of the network with edges 2h and its

center in the node marked 0 (main node); its upper face shall be

called the first square; the cross section of the cube cut by a plane

passing through the point 0 parallel to the upper face, the second

square; and finally the lower face shall be called the third square.

The values of u at the moment t satisfy [23] in the network

nodes the relationships:

6 :8

24 UO95 , 2 E I', 1 -E i, a--,-,;-- (73)
t=1 c--7

6 2h
11' ,,', S E ., +E U" t _12 112. uo,# - , h' .. A .. " (74)

6=1 It=9

where uo,t is the value of u(x, y, z, t) in the main node 0; Z ui,t
i=1

is the sum of the values of u at the mid-points of the sides of

the second square and in the centers of the second and third squares;

26
Z urt denotes the sum of the values of u at the vertices of the
r=19

first and third squares; and, finally, Z is the sum of the values
k=7
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of u at the mid-points of the sides of the first and third squares

and at the vertices of the second square. The errors incurred from

discarding the remainder terms in (73) and (7) are estimated by

the inequalities:

13 "0,h

where Me is the maximum absolute value of the sixth-order partial

derivatives of u(x, y, z, t) inside S.

Next, we use (as was done above in the two-dimensional case),

together with (73) and (74), the Taylor expansions with respect to

t for
--"(X', Y, -, I- ) ai ?u (x, y, T1 -, 24),

where a and 1 are undetermined factors, and we choose a and P so as

to obtain relationships which are accurate to he .

We thus find two general formulas. The first
6

,, ,- 4--- , ' -2 ,(75)

* :+>i ""-'R;,
h\

where

for which we shall have

The second
6 (76)

;'Uo, S4-24- I E- U, I
SI r- 19

valid for any a and 0 such that
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with the remainder term satisfying the inequality

In the last two inequalities the estimates
9 3R ,b .- 9 ., , : , : - -_ .; 6 .1 , h , .

A '-, ;.3

should be fulfilled for R, and R2.

When X = 6 there result as a special case from Formulas

(75) and (76) the formulas examined in the literature [241:

A

Z i r =7

The coefficients in these formulas are such that they satisfy

(§ 2) all the requirements for the convergence of the computational

process. It follows from this same Section 2 that the inequalities
+ 7a'T'11,h'

30
"-l a'- " TMl'h .

must hold true for the errors in these formulas at the moment T.

Such estimates can be obtained for the general formulas, if

the variations in X are limited by certain inequalities guaranteeing

the non-negativity of the coefficients in the formulas under considera-

tion.

Thus for Formula (75) the inequalities

should be fulfilled.

Study of these inequalities shows that they are fulfilled

simultaneously for each X of the interval

12 :-- 9-K-i ;'.

In the case of Formula (76) we have

2 7_- 14.
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D. Here also the problem of the numerical solution of the

three-dimensional heat-conduction equation may be reduced to a system

of linear algebraic equations. For this, we take Eq. (73), discard

the remainder term, and eliminate A2Uo,t from the equality obtained,

using for this purpose the relationship

6

h' A I'd, j- 6h, 1 , , (77)
i=I

which is obtained from Eq. (12) in the literature [23], if we replace

u by A u in (12), multiply the equality obtained by h2, and discard

the remainder term.

Then we can write
6 a

48oo,-4Z 1i,, Z I , I-6 o's A U,,,.
i=7 1=1

We substitute t + I in place of t in this formula, and the

formula obtained to the original formula, replace Auk, t(k = 0, 1,...,6)

by a-2u't(xk, " Zk t) in the sum, and use an equality slm!" to

(32) written for three spatial coordinates.

We thus obtain the relationship

C; 18
(48 + 12;) 1.941.,.,+--2 ( + -;-

6 
78

+ (4+ 2+ 2- E48L7(4- 12).) +*,g

and another I-' ,-7
6

(56 + 12 ;) r0, -~82.)Z E ,948 Ur,,+ +

.26 -=I

-r -'3,E ,, I+ E V,., - (j6 - 121) U,
S=1 r-19

constructed with the aid of (74) and (77)

The number of these formulas may easily be increased by using

the equalities presented in the literature [23].
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For example, we add to these formulas one more formula
6

(224 -- 8o A .~~~,,i- 2Z + (4-2) ,i+j (78)

S(4 -+ 2) , + 32' V,,,- (224 - oA)/',

r=J9 iz-1

which, when X h2 = 2, assumes the form
la

2

48 U, +1=4Zi, t+8 21l,u+4 tUd, - 8 Ue. (79)
r =-" 19 8i=8

Formula (78) is derived in the same way as the preceding two

by using (74) and the equality

.- ,- h' , + 4.4'A'

which we find using Eq. (17) from the literature [23].

Formula (78) leads to a system of equations which may be E-Ived

by the method of successive approximations. Convergence takes place

for values of X satisfying the Inequality

We arrive at this inequality by following, in a general way, the

discussions presented above for the two-dimensional case.

For this purpose, let us consider a cube Q, with faces parallel

to the coordinate planes and located at a distance h from the boundary

under the assumption that Q, lies wholly inside the given cube for

which Eq. (72) is solved. Network nodes lying on Q, shall be called

first-proximity nodes. Next, we take a cube (lying wholly inside a,)

again with faces parallel to the coordinate planes and located at

a distance h from the corresponding faces of Q1, and the nodes
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lying on it shall be called second-proximity nodes, etc. It remains

to make estimates of the error in the solution along the cubes 'Z, q,

on which the nodes lie, in exactly the same way as we estimated

the error along the squares yi, 72,... above.

We shall now solve an example which explains how the method

that has been set forth is applied to physinal problems. Assume that

a homogeneous cube of cast iron with side L - 1 m is being cooled

and that a temperature of OC is maintained on all the faces of the

cube throughout the entire cooling process. It is required to find

the temperature distribution inside the cube at the moment of

time T = 1.6 hrs, when the initial temperature is distributed (inside

the cube) in the following way:

u(y, y, .o).- o sin . ril -.. I sin . (80)

In order to solve our problem, we must integrate Differential

Equation (72) with Initial Condition (80) and the boundary condition

u = o (81)

for t .O.

In determining the thermal diffusivity of cast iron we assume

that the thermal conductivity is

X=54 -,

hr a.

the specific heat

C-0,12 MAI

the specific gravity

7-20kg

where kcal, as usual, means kilocalorie (large calorie).
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Next, let us proceed to calculate the thermal diffusivity.

According tc the data of the preceding paragraph, we find:

We are now able to integrate Eq. (72) numerically. For this purpose,

let us take the length of an edge of a network cube h = 0.2 and use

a seven-term equality of type (79), for which the spacing with

respect to t should satisfy the condition

1-2--o,32 (hmm).
2a

The initial values of the temperature in the network nodes are

calculated from (80).
1 2

5 S

I 12 2 I123
12 1213 3 2

2 3 3 2 4 3
2' 3 3 2 .3 4 14 3

1 2 2 1 2 3 3 2

3 4
5

2 3 3 j1 212 1

3 4 ' 2 ,3 3 2

s 14 4" 3 23i3 2

~2 J3 12- - 2 12

Fig. 2.



In setting up the equations it is advantageous to use the cross

sections of the cube cut by the planes
k

-k- t,. 2. 3 4),

perpendicular to its edges. These cross sections are presented in

Fig. 2; in them certain nodes [viz. those in which the values of

u(x, y, z, t) coincide due to the synmmetrical temperature distribu-

tiun] are designated by the same numbers.

In the network nodes lying on the boundaries of these squares,

as well as on the faces of the cube z = 0 and z = 1, the temperature

at any moment of time should be taken equal to zero, in accordance

with (81).

Applying Formula (79) to our example (to the nodes designated

in Fig. 2), we obtain a system of linear equations:

4 S U,+ ,' 12U,, 1+ - Su,' 12 U,,, U4,1 ,

44 L,,t "=4,~ (U,1 .g -2 U, ) -4Us,, -4U,,+, 9 U3 ,t + Ur,,.
40U -t+1 4(1 ',i- 7 U2l " + l ' 2U3,,+iUI,,,,40 U3.gt ,-4 (U,, g. - U , . ) , 9 U ,, ±0, , - +r" ~

;6[i,#l=2 Ls~t .U,,ut 30',,. +15 U,,. + EUr,t,.

solving which for t = 0, 1, 21, 31, and 41, we find a solution to

Eq. (72) (with coefficient a2 = 0.0625) such that when t = 0 it

reverts in the network nodes to the given initial state, according

to (8o).

To avoid the method of successive approximations, it is expedient

to first solve the obtained system of equations for the unknowns

Uk, t+1 (k = 1, 2, 3, 4), and then perform the computations for each

layer using the temperature values in the nodes of the preceding

layer. We obtain the following four formulas.
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14388 U1.,4 1 .. - 2121 V, 1 54 U,.-$.-849 Usj - 494.Ui,,

14 58 3SX j- s I 'U,,, - 372 U,,r339611:,,-4777 U4,
14 3 ; U3,,.-"3 r,,, - ; 96 ,., -'- 2o67 ., . 2228 U4 0

14 3'8 U,, 41-494 I., a- 25 3 1 6 (.684l,, + 2741 Us. •

The results of calculations using these formulas are given in

Table 3.

TABLE 3

Temperature values in nodes of cubic network calculated
according to formula (79)

t •I at ab

V a.. U, t Us., U,., U,,U. U

0 !0,i 5  16,43 26,58 43,01 10.13 16;.4 26.58 43,01
1 5,;5 9,00 14.56 2,,5. 9.09 4,70 23,79."

,o4 4.93 7.97 12,90 3,I 5,08. 3 13,lb

3 1 .,67 2,70 4,.37 7,06 1.72 2,79 450 7,28:
41 0,91 1,48 :,39 ,;,87 0,95 1,54 249 4,03
31. 0,50 o0.8 2.32 2,22 0,53 0,85 138 2.23

The exact values of Ui,kl in the node (x,, Y., Zi) for various

moments of time t = k1 are calculated using the formula

iu - o sin = x, sin v. sin 1 Z-.¢ a4- . 1;#7 (k-.o, z .... , $),

since the function

u (x, y, , t) so sin x sin- . Y sin r .?e- 0*1s7d 7-

satisfies the given differential equation, as well as the given

initial and boundary conditions.

The method is also applicable in the case of an arbitrary

closed surface. It is only necessary to set up special equations

for the boundary nodeS, as we did for the two-dimensional case. A

large number of such equations may be constructed. For example,

the simplest of them can be obtained with the aid of the formula:
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hr 42 (,, h3 ha h ,, h . ,,h,&
r.I _ ___ --

h- +,J h + +  h,+ hhh6 hi sh

where ut, U t are the values of the function u(x, y, z,t)

in the main node v and the nodes next to it C, A,..., E, which are

separated from the main node (in directions opposite to or coincident

with the directions of the coordinate axes) by a distance of hl, h2,

he, respectively; and Au Vt is the value of the Laplace opera-

tion for the function u Vt in the node with the number v at the

moment t.

In the case of boundary conditions of the general type it is

necessary to have a formula of increased accuracy for the approxima-

tion of the normal derivative. For a cube they can be obtained by

reasoning in the same way as in item B in the derivation of the

formula for a square.

Received December 29, 1959.
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